Data Mining Classification: Alternative Techniques

Imbalanced Class Problem

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Class Imbalance Problem

Lots of classification problems where the classes are skewed (more records from one class than another)

- Credit card fraud
- Intrusion detection
- Defective products in manufacturing assembly line
- COVID-19 test results on a random sample

Key Challenge:

 Evaluation measures such as accuracy are not wellsuited for imbalanced class

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

a: TP (true positive)

- b: FN (false negative)
- c: FP (false positive)
- d: TN (true negative)

Accuracy

	PREDICTED CLASS			
	Class=No			
ACTUAL	Class=Yes	a (TP)	b (FN)	
CLASS	Class=No	с (FP)	d (TN)	

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy

Consider a 2-class problem

- Number of Class NO examples = 990
- Number of Class YES examples = 10

If a model predicts everything to be class NO, accuracy is 990/1000 = 99%

- This is misleading because this trivial model does not detect any class YES example
- Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

		PREDICTED CLASS		
			Class=Yes	Class=No
	ACTUAL	Class=Yes	0	10
	CLASS	Class=No	0	990
2/15/2021		Data Mining, 2 nd Eo	lition	5

Which model is better?

Accuracy: 99%

Which model is better?

•		PREDICTED		
A			Class=Yes	Class=No
	ACTUAL	Class=Yes	5	5
		Class=No	0	990

	PREDICTED CLASS			
		Class=Yes	Class=No	
	Class=Yes	а	b	
CLASS	Class=No	С	d	

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) = $\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p) =
$$\frac{10}{10+10} = 0.5$$

Recall (r) = $\frac{10}{10+0} = 1$
F - measure (F) = $\frac{2*1*0.5}{1+0.5} = 0.62$
Accuracy = $\frac{990}{1000} = 0.99$

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	10	0	
CLASS	Class=No	10	980	

Precision (p) =
$$\frac{10}{10+10} = 0.5$$

Recall (r) = $\frac{10}{10+0} = 1$
F - measure (F) = $\frac{2*1*0.5}{1+0.5} = 0.62$
Accuracy = $\frac{990}{1000} = 0.99$

	PREDICTED CLASS			
	Class=No			
ACTUAL	Class=Yes	1	9	
CLASS	Class=No	0	990	

Precision (p) =
$$\frac{1}{1+0} = 1$$

Recall (r) = $\frac{1}{1+9} = 0.1$
F-measure (F) = $\frac{2*0.1*1}{1+0.1} = 0.18$
Accuracy = $\frac{991}{1000} = 0.991$

Which of these classifiers is better?

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) = 0.8Recall (r) = 0.8F - measure (F) = 0.8Accuracy = 0.8

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	40	10	
CLASS	Class=No	1000	4000	

Precision (p) =~ 0.04Recall (r) = 0.8F - measure (F) =~ 0.08Accuracy =~ 0.8

R

Measures of Classification Performance

	PREDICTED CLASS				
ACTUAL CLASS		Yes	No		
	Yes	TP	FN		
	No	FP	TN		

 α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

ErrorRate = 1 - accuracy

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN Rate = \frac{TN}{TN + FP}$$

$$FP \ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

$$Power = sensitivity = 1 - \beta$$

А	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	40	10	
CLASS	Class=No	10	40	

В	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	1000	4000		

Precision (p) = 0.8TPR = Recall (r) = 0.8FPR = 0.2F-measure (F) = 0.8Accuracy = 0.8

 $\frac{\text{TPR}}{\text{FPR}} = 4$

Precision (p) = 0.038TPR = Recall (r) = 0.8FPR = 0.2F-measure (F) = 0.07Accuracy = 0.8TPR

Which of these classifiers is better?

А	PREDICTED CLASS					
	Class=Yes Class=No					
	Class=Yes	10	40			
CLASS	Class=No	10	40			

```
Precision (p) = 0.5
TPR = Recall (r) = 0.2
FPR = 0.2
F - measure = 0.28
```

В	PREDICTED CLASS				
		Class=Yes	Class=No		
	Class=Yes	25	25		
ACTUAL CLASS	Class=No	25	25		

Precision (p) = 0.5TPR = Recall (r) = 0.5FPR = 0.5 F - measure = 0.5

С	PREDICTED CLASS				
		Class=Yes	Class=No	Т	
ΛΟΤΙΙΛΙ	Class=Yes	40	10	F	
CLASS	Class=No	40	10	F-	

Precision (p) = 0.5 $\Gamma PR = Recall (r) = 0.8$ FPR = 0.8F - measure = 0.61

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class (1,1): declare everything
- (1,1): declare everything to be positive class
- (1,0): ideal

Diagonal line:

- Random guessing
- Below diagonal line:
 - prediction is opposite of the true class

ROC (Receiver Operating Characteristic)

To draw ROC curve, classifier must produce continuous-valued output

- Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
- By using different thresholds on this value, we can create different variations of the classifier with TPR/FPR tradeoffs

Many classifiers produce only discrete outputs (i.e., predicted class)

- How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM

Example: Decision Trees

2/15/2021 Introduction to Data Mining, 2nd Edition

18

ROC Curve Example

ROC Curve Example

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t is classified as positive

How to Construct an ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use a classifier that produces a continuous-valued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	ТР	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\rightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Using ROC for Model Comparison

Dealing with Imbalanced Classes - Summary

Many measures exists, but none of them may be ideal in all situations

- Random classifiers can have high value for many of these measures
- TPR/FPR provides important information but may not be sufficient by itself in many practical scenarios
- Given two classifiers, sometimes you can tell that one of them is strictly better than the other

 C1 is strictly better than C2 if C1 has strictly better TPR and FPR relative to C2 (or same TPR and better FPR, and vice versa)

- Even if C1 is strictly better than C2, C1's F-value can be worse than C2's if they are evaluated on data sets with different imbalances
- Classifier C1 can be better or worse than C2 depending on the scenario at hand (class imbalance, importance of TP vs FP, cost/time tradeoffs)

Which Classifer is better?

T1	PREDICTED CLASS				
		Class=Yes	Class=No		
	Class=Yes	50	50		
CLASS	Class=No	1	99		

T2	PREDICTED CLASS				
		Class=Yes	Class=No		
	Class=Yes	99	1		
CLASS	Class=No	10	90		

Т3	PREDICTED CLASS				
		Class=Yes	Class=No		
	Class=Yes	99	1		
CLASS	Class=No	1	99		

2/15/2021 Introduction to Data Mining, 2nd Edition

Precision (p) = 0.98TPR = Recall (r) = 0.5FPR = 0.01 TPR/FPR = 50 F - measure = 0.66

Precision (p) = 0.9TPR = Recall (r) = 0.99FPR = 0.1TPR/FPR = 9.9F - measure = 0.94

Precision (p) = 0.99 TPR = Recall (r) = 0.99 FPR = 0.01 TPR/FPR = 99 F - measure = 0.99

Which Classifer is better? Medium Skew case

T1	PREDICTED CLASS				
		Class=Yes	Class=No		
	Class=Yes	50	50		
CLASS	Class=No	10	990		

T2	PREDICTED CLASS				
	Class=Yes Class=No				
	Class=Yes	99	1		
CLASS	Class=No	100	900		

Т3	PREDICTED CLASS				
		Class=Yes	Class=No		
	Class=Yes	99	1		
CLASS	Class=No	10	990		

2/15/2021 Introduction to Data Mining, 2nd Edition

Precision (p) = 0.83TPR = Recall (r) = 0.5FPR = 0.01TPR/FPR = 50F - measure = 0.62

Precision (p) = 0.5TPR = Recall (r) = 0.99FPR = 0.1TPR/FPR = 9.9F - measure = 0.66

Precision (p) = 0.9 TPR = Recall (r) = 0.99 FPR = 0.01 TPR/FPR = 99 F - measure = 0.94

Which Classifer is better? High Skew case

T1	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	50	50	
	Class=No	100	9900	

T2	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	99	1	
	Class=No	1000	9000	

Т3	PREDICTED CLASS			
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	99	1	
	Class=No	100	9900	

2/15/2021 Introduction to Data Mining, 2nd Edition

Precision (p) = 0.3TPR = Recall (r) = 0.5FPR = 0.01 TPR/FPR = 50 F - measure = 0.375

Precision (p) = 0.09TPR = Recall (r) = 0.99FPR = 0.1TPR/FPR = 9.9F - measure = 0.165

Precision (p) = 0.5 TPR = Recall (r) = 0.99 FPR = 0.01 TPR/FPR = 99F - measure = 0.66 Modify the distribution of training data so that rare class is well-represented in training set

- Undersample the majority class
- Oversample the rare class