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Bayes Classifier

• A probabilistic framework for solving classification 

problems

• Conditional Probability:

•  Bayes theorem:
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Using Bayes Theorem for Classification

• Consider each attribute and class 

label as random variables

• Given a record with attributes (X1, 

X2,…, Xd), the goal  is to predict 

class Y

– Specifically, we want to find the value of 

Y that maximizes P(Y| X1, X2,…, Xd )

• Can we estimate P(Y| X1, X2,…, Xd ) 

directly from data?

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Using Bayes Theorem for Classification

• Approach:

– compute posterior probability P(Y | X1, X2, …, Xd) using 
the Bayes theorem

– Maximum a-posteriori: Choose Y that maximizes 
  P(Y | X1, X2, …, Xd)
  

– Equivalent to choosing value of Y that maximizes
     P(X1, X2, …, Xd|Y) P(Y)

• How to estimate P(X1, X2, …, Xd | Y )?
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Example Data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Given a Test Record:

• We need to estimate

P(Evade = Yes | X) and P(Evade = No | X)

In the following we will replace 

 Evade = Yes by Yes, and 

 Evade = No by No
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Example Data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Given a Test Record:
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Conditional Independence

• X and Y are conditionally independent given Z if 

P(X|YZ) = P(X|Z)

• Example: Arm length and reading skills 

– Young child has shorter arm length and 

limited reading skills, compared to adults

– If age is fixed, no apparent relationship 

between arm length and reading skills

– Arm length and reading skills are conditionally 

independent given age
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Naïve Bayes Classifier

• Assume independence among attributes Xi when class is 

given:    

– P(X1, X2, …, Xd |Yj) = P(X1| Yj) P(X2| Yj)… P(Xd| Yj)

 

– Now we can estimate P(Xi| Yj) for all Xi and Yj 

combinations from the training data

– New point is classified to Yj if  P(Yj)  P(Xi| Yj)  is 

maximal.
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Naïve Bayes on Example Data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Given a Test Record:

P(X | Yes) = 

  P(Refund = No | Yes) x 

  P(Divorced | Yes) x 

  P(Income = 120K | Yes)

P(X | No) = 

  P(Refund = No | No) x 

  P(Divorced | No) x 

  P(Income = 120K | No)
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Estimate Probabilities from Data

•  P(y) = fraction of instances of class y

– e.g.,  P(No) = 7/10, 
         P(Yes) = 3/10

• For categorical attributes:
  

     P(Xi =c| y) = nc/ n 

– where |Xi =c| is number of 
instances having attribute 
value Xi =c and belonging to 
class y

– Examples:

 P(Status=Married|No) = 4/7
P(Refund=Yes|Yes)=0

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Estimate Probabilities from Data

• For continuous attributes: 

– Discretization: Partition the range into bins:

◆ Replace continuous value with bin value

– Attribute changed from continuous to ordinal

– Probability density estimation:

◆ Assume attribute follows a normal distribution

◆ Use data to estimate parameters of distribution 

   (e.g., mean and standard deviation)

◆ Once probability distribution is known, use it to 

estimate the conditional probability P(Xi|Y)
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Estimate Probabilities from Data

• Normal distribution:

– One for each (Xi,Yi) pair

• For (Income, Class=No):

– If Class=No

◆ sample mean = 110

◆ sample variance = 2975

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Example of Naïve Bayes Classifier

120K)IncomeDivorced,No,Refund( ===X

• P(X | No) = P(Refund=No | No)

    P(Divorced | No)

    P(Income=120K | No)

               = 4/7  1/7  0.0072 = 0.0006

• P(X | Yes) = P(Refund=No | Yes)

                      P(Divorced | Yes)

                      P(Income=120K | Yes)

                = 1  1/3  1.2  10-9 = 4  10-10

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)

      => Class = No

Given a Test Record:

Naïve  Bayes Classifier:

P(Refund = Yes | No) = 3/7

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1

P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3

P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110

    sample variance = 2975

If class = Yes: sample mean = 90

    sample variance = 25
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Naïve Bayes Classifier can make decisions with partial 

information about attributes in the test record

P(Yes) = 3/10

     P(No) = 7/10

If we only know that marital status is Divorced, then:

     P(Yes | Divorced) = 1/3 x 3/10 / P(Divorced)

     P(No | Divorced) = 1/7 x 7/10 / P(Divorced)

If we also know that Refund = No, then

     P(Yes | Refund = No, Divorced) = 1 x 1/3 x 3/10 / 

           P(Divorced, Refund = No)

     P(No | Refund = No, Divorced) = 4/7 x 1/7 x 7/10 /    

           P(Divorced, Refund = No)

If we also know that Taxable Income = 120, then

     P(Yes | Refund = No, Divorced, Income = 120) =

                                              1.2 x10-9 x  1 x 1/3 x 3/10 /     

P(Divorced, Refund = No,  Income = 120 )

     P(No | Refund = No, Divorced Income = 120) = 

                                       0.0072  x 4/7 x 1/7 x 7/10 /   

P(Divorced, Refund = No, Income = 120)

Even in absence of information 

about any attributes, we can use 

Apriori Probabilities of Class 

Variable:

Naïve  Bayes Classifier:

P(Refund = Yes | No) = 3/7

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1

P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3

P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110

    sample variance = 2975

If class = Yes: sample mean = 90

    sample variance = 25
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Issues with Naïve Bayes Classifier

P(Yes) = 3/10

     P(No) = 7/10

     

     P(Yes | Married) = 0 x 3/10 / P(Married)

     P(No | Married) = 4/7 x 7/10 / P(Married)

Naïve  Bayes Classifier:

P(Refund = Yes | No) = 3/7

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1

P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3

P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110

    sample variance = 2975

If class = Yes: sample mean = 90

    sample variance = 25

X = (Married)

Given a Test Record:
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Issues with Naïve Bayes Classifier

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Naïve  Bayes Classifier:

P(Refund = Yes | No) = 2/6

P(Refund = No | No) = 4/6

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1

P(Marital Status = Single | No) = 2/6

P(Marital Status = Divorced | No) = 0

P(Marital Status = Married | No) = 4/6

P(Marital Status = Single | Yes) = 2/3

P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0/3

For Taxable Income:

If class = No: sample mean = 91

    sample variance = 685

If class = No: sample mean = 90

    sample variance = 25

Consider the table with Tid = 7 deleted

Given X = (Refund = Yes, Divorced, 120K)

P(X | No) = 2/6 X 0 X 0.0083 = 0

P(X | Yes) = 0 X 1/3 X 1.2 X 10-9 = 0

Naïve Bayes will not be able to 

classify X as Yes or No!
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Issues with Naïve Bayes Classifier

• If one of the conditional probabilities is zero, then 

the entire expression becomes zero

• Need to use other estimates of conditional probabilities 

than simple fractions

• Probability estimation:

n: number of training 

instances belonging to class y

nc: number of instances with 

Xi = c and Y = y

v: total number of attribute 

values that Xi can take

p: initial estimate of 

(P(Xi = c|y) known apriori

m: hyper-parameter for our 

confidence in p

Laplace Estimate:  𝑃 𝑋𝑖 = 𝑐 𝑦) =
𝑛𝑐 + 1

𝑛 + 𝑣

m − estimate:  𝑃 𝑋𝑖 = 𝑐 𝑦) =
𝑛𝑐 + 𝑚𝑝

𝑛 + 𝑚

original:  𝑃 𝑋𝑖 = 𝑐 𝑦) =
𝑛𝑐

𝑛
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Example of Naïve Bayes Classifier

Name Give Birth Can Fly Live in Water Have Legs Class

human yes no no yes mammals

python no no no no non-mammals

salmon no no yes no non-mammals

whale yes no yes no mammals

frog no no sometimes yes non-mammals

komodo no no no yes non-mammals

bat yes yes no yes mammals

pigeon no yes no yes non-mammals

cat yes no no yes mammals

leopard shark yes no yes no non-mammals

turtle no no sometimes yes non-mammals

penguin no no sometimes yes non-mammals

porcupine yes no no yes mammals

eel no no yes no non-mammals

salamander no no sometimes yes non-mammals

gila monster no no no yes non-mammals

platypus no no no yes mammals

owl no yes no yes non-mammals

dolphin yes no yes no mammals

eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class

yes no yes no ?
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A: attributes

M: mammals

N: non-mammals

P(A|M)P(M) > P(A|N)P(N)

=> Mammals
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Naïve Bayes (Summary)

• Robust to isolated noise points

• Handle missing values by ignoring the instance 
during probability estimate calculations

• Robust to irrelevant attributes

• Redundant and correlated attributes will violate 
class conditional assumption

–Use other techniques such as Bayesian Belief 
Networks (BBN)
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Naïve Bayes

• How does Naïve Bayes perform on the following dataset?

Conditional independence of attributes is violated
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Bayesian Belief Networks

• Provides graphical representation of probabilistic 

relationships among a set of random variables

• Consists of:

– A directed acyclic graph (dag)

◆ Node corresponds to a variable

◆ Arc corresponds to dependence 

relationship between a pair of variables

– A probability table associating each node to its 

immediate parent

A B

C
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Conditional Independence

• A node in a Bayesian network is conditionally 

independent of all of its nondescendants, if its 

parents are known

A B

C

D

D is parent of C

A is child of C

B is descendant of D

D is ancestor of A
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Conditional Independence

• Naïve Bayes assumption:

...X
1

X
2

X
3

X
4

y

X
d
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Probability Tables

• If X does not have any parents, table contains 

prior probability P(X)

• If X has only one parent (Y), table contains 

conditional probability P(X|Y)

• If X has multiple parents (Y1, Y2,…, Yk), table 

contains conditional probability P(X|Y1, Y2,…, Yk)

Y

X
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Example of Bayesian Belief Network

Exercise Diet

Heart 
Disease

Chest Pain
Blood 

Pressure

Exercise=Yes 0.7

Exercise=No 0.3

Diet=Healthy 0.25

Diet=Unhealthy 0.75

 

D=Healthy 

E=Yes

D=Healthy 

E=No

D=Unhealthy 

E=Yes

D=Unhealthy 

E=No

HD=Yes 0.25 0.45 0.55 0.75

HD=No 0.75 0.55 0.45 0.25

 HD=Yes HD=No

CP=Yes 0.8 0.01

CP=No 0.2 0.99

 HD=Yes HD=No

BP=High 0.85 0.2

BP=Low 0.15 0.8
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Example of Inferencing using BBN

• Given: X = (E=No, D=Yes, CP=Yes, BP=High)

– Compute P(HD|E,D,CP,BP)?

• P(HD=Yes| E=No,D=Yes) = 0.55

P(CP=Yes| HD=Yes) = 0.8

P(BP=High| HD=Yes) = 0.85

– P(HD=Yes|E=No,D=Yes,CP=Yes,BP=High) 

 0.55  0.8  0.85 = 0.374

• P(HD=No| E=No,D=Yes) = 0.45

P(CP=Yes| HD=No) = 0.01

P(BP=High| HD=No) = 0.2

– P(HD=No|E=No,D=Yes,CP=Yes,BP=High) 

 0.45  0.01  0.2 = 0.0009

Classify X 

as Yes
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